ANTENNS THEORY AND DESIGN

)

5

(

πυπ	Contents
*	
✤ 5.1	
* 5.2	
* 5.3	
* 5.4	-
* 5.5	
* 5.6	
* 5.7	
* 5.8	

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

$$f_{un} = \int_{-L/2}^{L/2} I(z') e^{j\beta z'\cos\theta} dz' \qquad (5-2)$$

$$f_{un} = \int_{-L/2}^{0} I_m \sin\left[\beta\left(\frac{L}{2} + z'\right)\right] e^{j\beta z'\cos\theta} dz' \qquad (5-3)$$

$$+ \int_{0}^{L/2} I_m \sin\left[\beta\left(\frac{L}{2} - z'\right)\right] e^{j\beta z'\cos\theta} dz' \qquad (5-4)$$

$$f_{un} = \frac{2I_m}{\beta} \frac{\cos\left[(\beta L/2)\cos\theta\right] - \cos\left(\beta L/2\right)}{\sin^2\theta} \qquad (5-4)$$

> (4-1)

 \geq

θ

$$E_{\theta} = j\omega\mu \sin\theta \frac{e^{-j\beta r}}{4\pi r} \frac{2I_m}{\beta} \frac{\cos\left[\left(\beta L/2\right)\cos\theta\right] - \cos\left(\beta L/2\right)}{\sin^2\theta} \qquad (5-5)$$

$$\omega \mu / \beta = \eta$$

$$E_{\theta} = j\mu \frac{e^{-j\beta r}}{2\pi r} I_{m} \frac{\cos \left[(\beta L / 2) \cos \theta \right] - \cos \left(\beta L / 2 \right)}{\sin \theta}$$

$$(5-6)$$

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

7/71

그림 5-3 다양한 중앙급전 다이플에 대한 전류분포. 화살표는 최대전류조건에서의 상대적인 방향을 나타낸다.

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

πυπ

표 5-1 다이풀의 간단한	입력저항에 대한 공식들		•		
길이 <i>L</i>	입력저항 (<i>R_n</i>), Ω		>		
$0 < L < \frac{\lambda}{4}$	$20 \pi^2 \left(\frac{L}{\lambda}\right)^2$		\blacktriangleright	()
$\frac{\lambda}{4} < L < \frac{\lambda}{2}$	$24.7\left(\pi \frac{L}{\lambda}\right)^{2.4}$		>		
$\frac{\lambda}{2} < L < 0.637\lambda$	$11.14\left(\pi \frac{L}{\lambda}\right)^{4.1}$		>	가	
표 5-2 도선의 : 위해 필.	지름 2a와 길이 L인 요한 도선 길이] 반파장 공진형 r	가이풀을 만들기		
길이 대	관요한	공전 길이	다이품		
지름비	% 단축	L	두께 구분		
5000	2	0.49λ	Very thin		
50	5	0.475λ	Thin		
10	9	0.455λ	Thick		

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

그림 5-11 폴디드 다이풀 안테나

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

VSWR	Percent Reflected Power = $ \Gamma ^2 \times 100$ = $\left(\frac{\text{VSWR} - 1}{\text{VSWR} + 1}\right)^2 \times 100$	Percent Transmited Power = $q \times 100$ = $(1 - \Gamma ^2) \times 100$
1.0	0.0	100.0
1.1	0.2	99.8
1.2	0.8	99.2
1.5	4.0	96.0
2.0	11.1	88.9
3.0	25.0	75.0
4.0	36.0	64.0
5.0	44.4	55.6
5.83	50.0	50.0
10.0	66.9	33.1

표 5-3 부정합된 안테나에 대한 VSWR과 전달전력

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

그림 5-19 위치가 변한 급전점을 가지는 반좌장 다이풀

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

ה**ווו**ה

$d/\lambda = 0.0085$	Boom length of Yagi-Uda Array, &							
$S_N = 0.2\lambda$	0.4	0.8	1.20	2.2	3.2	4.2		
Length of reflector, L_N / λ	0.482	0.482	0.482	0.482	0.482	0.475		
D,	0.442	0.428	0.428	0.432	0.428	0.424		
D ₂		0.424	0.420	0.415	0.420	0.424		
≤ D,		0.428	0.420	0.407	0.407	0.420		
			0.428	0.398	0.398	0.407		
⊂ D ₃				0.390	0.394	0.403		
6 D.				0.390	0.390	0.398		
5 D.				0.390	0.386	0.394		
5 D.				0.390	0.386	0.390		
≣ D.				0.398	0.386	0.390		
E Dm				0.407	0.386	0.390		
E D11					0.386	0,390		
著 Dia					0.386	0.390		
$\exists D_{13}$					0.386	0.390		
D_{14}					0.386			
D15					0.386			
Spacing between directors $(S_M \lambda)$	0.20	0.20	0.25	0.20	0.20	0.308		
Gain relative to half-wave dipole, dBd	7.1	9.2	10.2	12.25	13.4	14.2		
Design curve (Fig. 5-37)	(41)	(C)	(C)	(B)	(C)	(D)		
Front-to-back ratio, dB	8	15	19	23	22	20		

표 5-4 6개의 다른 중앙지지대 길이의 야기-우다 배열 안태나에 대한 기생다이풀의 최적 길이

Source: P. P. Viezbicke, "Yagi Antenna Design," NBS Tech. Note 888, National Bureau of Standards, Washington, DC, Dec. 1968.

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

<u> </u>	5.6			
*	(V	/HF)	
✤ 2.3				
*				
□ ◆ 2.3.1				
			,	

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

33/71

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

그림 5-46 xz 평면에서 실제 지면 위의 전류 I인 단형다이플과 전류의 영상 Γel. yz 평면의 영상전류는 Γ_HI이다.

,

38/71

הוווה		
$\square \ \Gamma_{\rm V}$ $\checkmark \qquad \varepsilon'_r$	$\Gamma_{V} = \frac{\varepsilon' \cos \theta - \sqrt{\varepsilon'_{r} - \sin^{2} \theta}}{\varepsilon' \cos \theta + \sqrt{\varepsilon'_{r} - \sin^{2} \theta}}$ 7 (1.4)	(5–56) ,
	$\varepsilon_r' = \frac{\varepsilon'}{\varepsilon_0} = \varepsilon_r - j \frac{\sigma}{\omega \varepsilon_0}$	(5–57)
$ \begin{array}{ccc} \square \ \varepsilon_r & \sigma \\ & 7 \end{matrix} , \\ \square \ \varepsilon_r' \end{array} $	10 ⁻³ 3310 ⁻² S/m	
5 -47	$\frac{\sigma}{\omega\varepsilon_0} = 18 \times 10^3 \frac{\sigma}{f_{MHz}}$ $\sigma = 12310^{-3}$	(5-58) フト

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

□ 7 -1 7 + (pseudo-Brewster ang 7 + Γ,	gle)	$\Gamma_{\rm V} = 90^{\circ}$	(θ ~ 90°)	Γ _H
	(5-56) (5-57)	?Γ _V ?→1	σ → :	ς→0
 ► HF VHF ✓ 07 90° ✓ (5-52) 	(grazing angle	e) Γ _v ≈-1	θ =90°	
\checkmark	AM			

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

41/71

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

그림 5-51 한파장 정사각형 루프 안테나, 각 변의 길이는 1/4이다. 실선은 식 (5-59)의 정현 과 전류분포를 가진다. 쇄선은 정확한 모멘트법으로 얻어진 전류 크기이다.

51/71

 $\mathbf{r}_{1}' = \mathbf{x}'\hat{\mathbf{x}} - \frac{\lambda}{8}\hat{\mathbf{y}} \qquad \mathbf{r}_{2}' = \mathbf{x}'\hat{\mathbf{x}} + \frac{\lambda}{8}\hat{\mathbf{y}} \qquad (5-61)$ $\mathbf{r}_{3}' = -\frac{\lambda}{8}\hat{\mathbf{x}} + \mathbf{y}'\hat{\mathbf{y}} \qquad \mathbf{r}_{4}' = \frac{\lambda}{8}\hat{\mathbf{x}} + \mathbf{y}'\hat{\mathbf{y}} \qquad (5-61)$ $(5-61) \qquad (5-60)$ $\mathbf{A} = \mu \frac{e^{-j\beta r}}{4\pi r} I_{o} \left[-\hat{\mathbf{x}} \int_{-\lambda/8}^{\lambda/8} \cos(\beta \mathbf{x}') e^{j\beta \mathbf{x}'} \sin\theta \cos\phi (e^{-j(\pi/4)}\sin\theta \sin\phi + e^{j(\pi/4)}\sin\theta \sin\phi}) d\mathbf{x}' + \hat{\mathbf{y}} \int_{-\lambda/8}^{\lambda/8} \sin(\beta \mathbf{y}') e^{j\beta \mathbf{y}'} \sin\theta \sin\phi (-e^{-j(\pi/4)}\sin\theta \cos\phi + e^{j(\pi/4)}\sin\theta \cos\phi}) d\mathbf{y}' \right]$ $= \mu \frac{e^{-j\beta r}}{4\pi r} I_{o} \left[-\hat{\mathbf{x}} 2 \cos\left(\frac{\pi}{2}\sin\theta \sin\phi\right) \int_{-\lambda/8}^{\lambda/8} \cos(\beta \mathbf{x}') e^{j\beta \mathbf{x}'}\sin\theta \cos\phi} d\mathbf{x}' \right]$

UIT

$$+ \hat{\mathbf{y}}_{2j} \sin\left(\frac{\pi}{4}\sin\theta\cos\phi\right) \int_{-\lambda/8}^{\lambda/8} \sin(\beta y') e^{j\beta x'\sin\theta\sin\phi} dy'$$
(5-62)

$$1, 2 \quad 3, 4$$

$$\mathbf{A} = \mu \frac{e^{-j\beta x}}{4\pi r} \frac{2\sqrt{2}I_o}{\beta} \left\{ \hat{\mathbf{x}} \frac{\cos[(\pi/4)\cos\Omega]}{\sin^2\gamma} \left[\cos\gamma\sin\left(\frac{\pi}{4}\cos\gamma\right) - \cos\left(\frac{\pi}{4}\cos\gamma\right) \right] \right.$$

$$\left. - \hat{\mathbf{y}} \frac{\sin[(\pi/4)\cos\gamma]}{\sin^2\Omega} \left[\cos\Omega\cos\left(\frac{\pi}{4}\cos\Omega\right) - \sin\left(\frac{\pi}{4}\cos\Omega\right) \right] \right\} \qquad (5-63)$$

$$\cos\gamma = \sin\theta\cos\phi \quad \exists z \exists z \quad \cos\Omega = \sin\theta\sin\phi \qquad (5-64)$$

$$\left. \sum_{\theta = -j\omega A_{\theta} = -j\omega \mathbf{A} \cdot \hat{\mathbf{\theta}} = -j\omega(A_x \hat{\mathbf{x}} \cdot \hat{\mathbf{\theta}} + A_y \hat{\mathbf{y}} \cdot \hat{\mathbf{\theta}}) \right.$$

$$\left. = -j\omega(A_x\cos\theta\cos\phi + A_y\cos\theta\sin\phi) \qquad (5-65a) \right\}$$

$$E_{\phi} = -j\omega \mathbf{A} \cdot \hat{\mathbf{\phi}} = -j\omega(-A_x \sin \phi + A_y \cos \phi) \qquad (5-65b)$$

$$E_{\theta} = \frac{jI_{\theta}\eta e^{-j\theta}}{\sqrt{2\pi r}} \cos \theta \left\{ \frac{\sin \phi \sin[(\pi/4) \sin \theta \cos \phi]}{1 - \sin^2 \theta \sin^2 \phi} \\ \cdot \left[\sin \theta \sin \phi \cos\left(\frac{\pi}{4} \sin \theta \sin \phi\right) - \sin\left(\frac{\pi}{4} \sin \theta \sin \phi\right) \right] \\ - \frac{\cos \phi \cos[(\pi/4) \sin \theta \sin \phi]}{1 - \sin^2 \theta \cos^2 \phi}$$
(5-66a)
$$\cdot \left[\sin \theta \cos \phi \sin\left(\frac{\pi}{4} \sin \theta \cos \phi\right) - \cos\left(\frac{\pi}{4} \sin \theta \cos \phi\right) \right] \right\}$$
$$E_{\phi} = \frac{jI_{\theta}\eta e^{-j\theta r}}{\sqrt{2\pi r}} \left\{ \frac{\cos \phi \sin[(\pi/4) \sin \theta \cos \phi]}{1 - \sin^2 \theta \sin^2 \phi} \\ \cdot \left[\sin \theta \sin \phi \cos\left(\frac{\pi}{4} \sin \theta \sin \phi\right) - \sin\left(\frac{\pi}{4} \sin \theta \sin \phi\right) \right] \\ + \frac{\sin \phi \cos[(\pi/4) \sin \theta \sin \phi]}{1 - \sin^2 \theta \cos^2 \phi}$$
(5-66b)
$$\cdot \left[\sin \theta \cos \phi \sin\left(\frac{\pi}{4} \sin \theta \cos \phi\right) - \cos\left(\frac{\pi}{4} \sin \theta \sin \phi\right) \right] \right\}$$

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

$$\begin{array}{c} & & 1.7 \\ & & & & y \quad (E \quad) \\ \theta = 90^{\circ} \quad , \quad (5-66) \\ & & & & & \\ E_{\theta} \bigg(\theta = \frac{\pi}{2} \bigg) = 0 & & & (5-67a) \\ & & & & \\ E_{\phi} \bigg(\theta = \frac{\pi}{2} \bigg) = \frac{jI_{a} \eta e^{-\eta h r}}{\sqrt{2} \pi r} \frac{\pi}{4} \bigg\{ \frac{\sin[(\pi/4) \cos \phi]}{(\pi/4) \cos \phi} \bigg[\sin \phi \cos\left(\frac{\pi}{4} \sin \phi\right) - \sin\left(\frac{\pi}{4} \sin \phi\right) \bigg] \\ & & + \frac{\cos[(\pi/4) \sin \phi]}{(\pi/4) \sin \phi} \bigg[\cos \phi \sin\left(\frac{\pi}{4} \cos \phi\right) - \cos\left(\frac{\pi}{4} \cos \phi\right) \bigg] \bigg\} \\ & & + \frac{\cos[(\pi/4) \sin \phi]}{(\pi/4) \sin \phi} \bigg[\cos \phi \sin\left(\frac{\pi}{4} \cos \phi\right) - \cos\left(\frac{\pi}{4} \cos \phi\right) \bigg] \bigg\} \\ & & > y \qquad (5-67b) \qquad (5-67b) \\ & & & E_{\phi} \bigg(\theta = \frac{\pi}{2}, \phi = \frac{\pi}{2} \bigg) = -\frac{jI_{o} \eta e^{-\eta h r}}{\sqrt{2} \pi r} \frac{1}{\sqrt{2}} \qquad (5-68) \\ & & & \\ & & > E \qquad xz \qquad (5-66) \\ & & & \\$$

$$E_{\theta}(\phi = 0) = \frac{jI_o \eta e^{-\beta r}}{\sqrt{2}\pi r} \frac{\sin \theta \sin[(\pi/4) \sin \theta] - \cos[(\pi/4) \sin \theta]}{\cos \theta}$$
(5-69b)

≻ H yz (5-66)

$$E_{\theta}\left(\phi = \frac{\pi}{2}\right) = 0 \tag{5-70a}$$

.

$$E_{\phi}\left(\phi = \frac{\pi}{2}\right) = -\frac{jI_{o}\eta e^{-j\beta r}}{\sqrt{2}\pi r}\cos\left(\frac{\pi}{4}\sin\theta\right)$$
(5-70b)

> 5-52c() E\u03c6 (\u03c6/4)\sin \u03c6] 1, 2
. z (\u03c6=0^\u03c6)
(5-69) (5-70) x .

$$E_x = -\frac{jI_o \eta e^{-j\beta r}}{\sqrt{2}\pi r}$$
(5-71)
> (5-68) y Ex $\sqrt{2}$.

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

- > (1~5%, 10%)
- \succ
- > Surface wave 7
- > (feed line)
- > Feed line radiator isolation
- > Array , sidelobe

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

 $\Delta L \simeq h$

▶ |←

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

$$E_{\theta} = E_{o} \cos \phi f(\theta, \phi) \qquad (5-73a)$$

$$E_{\phi} = -E_{o} \cos \theta \sin \phi f(\theta, \phi) \qquad (5-73b)$$

$$c[7]\lambda]$$

$$f(\theta, \phi) = \frac{\sin\left[\frac{\beta W}{2} \sin \theta \sin \phi\right]}{\frac{\beta W}{2} \sin \theta \sin \phi} \cos\left(\frac{\beta L}{2} \sin \theta \cos \phi\right) \qquad (5-73c)$$

$$F_{E}(\theta) = \cos\left(\frac{\beta L}{2} \sin \theta\right) \qquad E = \frac{\beta E}{\delta}, \ \phi = 0^{\circ} \qquad (5-74a)$$

$$F_{II}(\theta) = \cos \theta \frac{\sin\left[\frac{\beta W}{2} \sin \theta\right]}{\frac{\beta W}{2} \sin \theta} \qquad H = 90^{\circ} \qquad (5-74b)$$

가

$$Z_A = 90 \frac{\varepsilon_r^2}{\varepsilon_r - 1} \left(\frac{L}{W}\right)^2 \Omega \qquad \text{therefore} \quad \text{and} \quad (5-75)$$

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

University of Incheon, Coding Theory & Communication Laboratory wgyang@incheon.ac.kr

